
《乘法结合律》教学反思
作为一名优秀的教师,课堂教学是重要的任务之一,写教学反思可以很好的把我们的教学记录下来,教学反思应该怎么写呢?下面是小编整理的《乘法结合律》教学反思,欢迎大家分享。
《乘法结合律》教学反思 篇11、乘法分配律既要注重它的外形结构特点,更要注重其内涵。
乘法分配率的结构特点,即两数的和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的.练习,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。
《乘法结合律》教学反思 篇2一、对主题图使用的体会
教材所提供的主题图是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:3×4×5、3×5×4、4×5×3范围内,我们探索所需要的类似3×(4×5)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的“引导”得到,其实很不自然,有些强加的感觉。也许,直接呈现给学生会更好些。但是又与以前学习的.知识是相矛盾的,如(3×4)×5,是不应该添括号的。
二、对教学内容的体会
在教学中发现,在具体应用时,学生对乘法结合律和乘法交换律是很难分清楚的。比如:25×125×8×4,学生处理的第一步是:25×4×125×8,第二步是:(25×4)×(125×8)。一般来说,学生认为第一步是依据乘法交换律,第二步是乘法结合律。显然这样的认识是不全面的。
我认为有些知识在小学阶段的教学可以模糊一点。
首先,在小学阶段,有些问题要搞清楚,是很难的。对乘法结合律和交换律,北师大教材没有文字定义,只有字母模型,参考人教版,它对乘法结合律和交换律的定义是:先把前两个数相乘,或者先把后两个数相乘,积不变;两个乘数交换位置,积不变,这叫做乘法交换律。较之原来浙教版,少了三个数相乘和两个数相乘的前提,结合它的教师用书,我们不难发现,它告诉大家的信息是:编者无奈,小学生的认知水平低,科学地分析计算过程中到底根据什么规律,对他们来说,太麻烦,也不好理解,只单纯产应用了结合律或交换律算了。
其次,没有这个必要的。在小学阶段不存在非要清楚区分乘法结合律与交换律,我们只要让学生理解乘法结合律是一种数学规律,意义是改变运算顺序,积不变;乘法交换律也是数学规律,改变乘数位置,积不变。至于一定要在三个数相乘和两个数相乘的前提下讨论的话,那学生在简便计算中,看不到三个数、两个数的模型,很难想到依据的定律是什么,只知道改变的什么。所以,从意义上理解定律更能让学生接受,然后让学生体会用定律模型能把这种变化规律表达地最简洁、本质。
三、关于对乘法运算定律与简便运算关系的思考
是不是学了乘法运算定律以后,学生才会简便运算的呢?有一个有趣的现象,教师应该有体会。很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:一是教材本身和老师之前或多或少有渗透;二是学生课外学习所得;三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
乘法分配律的作用只是为了简便运算吗?学生一想到乘法运算定律就想是简便运算,包括验证时的举例时。其实乘法运算定律是一种数学运算规律,存在一切连乘算式中,它是这种乘法运算中可变化规律最本质、简洁的模型。这些模型代表的可变化规律,有时可以使一些计算简便。但它不是因为简便运算而产生的,它的存在也不是单单为了简便运算。这点机会可以让学生体会。
从运算定律到简便运算,就这样一个课时可以了吗?我认为不合理,建议教材在运算定律教学中,重点建立模型和理解意义之后,安排一节运算定律的练习课,不是强化对运算定律模型的认识,而是对运算定律意义及作用的体会。同时培养学生规范的表达简便运算过程的习惯。在学生碰到一些特殊运算时,能有意识地根据定律向有利于我们计算简便的方向转化,即具备简便运算的意识。
《乘法结合律》教学反思 篇3本课是北师大版数学四年级上册第三单元《乘法》中的第三节,它是在学习了两位数乘三位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。对于乘法的交换律,学生学习表内乘法时有了初步体验,知道根据一句口诀能写两道乘法算式,知道互换乘数位置得数相同;并且在乘法的验算中已经初步运用过交换律,只不过他们还没有清楚地意识到这就是乘法交换律。理解乘法结合律对学生来说还有一定的难度,所以本节课应该让学生重点研究乘法结合律。教材主要把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程。授人以鱼,不如授人以渔,数学思想方法比数学知识本身更为重要。在学生自主探索的过程中,我引导学生通过猜测、验证、归纳、应用等学习形式,采用启发式教学方式,由浅入深,从直观到规律,让学生经历感受数学规律的探索过程与方法。
通过反思我认为在本课的教学中,有以下几个亮点:
1、在开课加入复习口算,通过5×2、25×4、1 ……此处隐藏6376个字……意图,精心设计教学环节组织学生进行乘法结合律的发现与探索活动。这次的数学活动基本完成了预设的学习目标。上完这一课我收获以下几点:
1、充分挖掘教材进行再设计,组织学生估计,多角度观察与多种算法,这一环节设计安排得较好,做到充分利用教材较好地培养了学生的估计意识。
2、两次的验证活动安排设计得较好,第一次借直观图形进行验证,第二次在学生获得感性认识的基础上,启发学生思考第一次的发现是否适合其他算式呢,引导学生扩大验证的范围,用抽象的算式举例验证,为发现、概括乘法结合律奠定基础。
3、及时帮助学生梳理思路,掌握探索的基本步骤。
探索数学规律是有一个过程的,这个过程需要学生自己体验、感受。本课教学,我在学生已经概括出乘法结合律后,没有立即组织学生进行相关内容的.练习,而是询问学生:刚才我们是怎样发现乘法结合律呢?对学生刚刚经历的体验与感受及时进行梳理总结。
在教学中我也发现了一些问题,如:学生初次用自己的语言描述乘法结合律比较困难,会出现表达不够严谨的现象,此时,我引导得不够巧妙,有将自己的想法强加给学生的意图。另外,在归纳总结探索步骤时,学生归纳得较为迟钝,是否前面的探索经历对学生而言不够深刻。
《乘法结合律》教学反思 篇13本课是北师大版数学四年级上册第三单元《乘法》中的第三节,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程。但是我根据学生的实际情况与对这节课内容的研究,进行了修改。
本课我着重突出了以下几点:
⒈充分挖掘教材结合学生实际进行再设计
。教材中对于乘法结合律和交换律的探索是两个分散的情景,在备课时我依据书上的过程设计教学,可试课时发现在探索结合律时,教师在引导出书上的算式上也有些牵强,而且我发现学生对乘法交换律理解的更容易。所以我将探索交换律的过程作为探索结合律的阶梯,由浅入深,由易到难会让学生更容易接受。因此,我改变了教材结构,先探索乘法交换律,突出整体性。收到了较好的效果。
⒉注意渗透一种科学的学习方法。
对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,了解所要学习内容的目的是什么。在学习中渗透运用定律解决问题的好处,让学生学得积极、主动。
⒊体现学生的自主学习,合作交流。课堂上老师应激发学生的学习积
极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的.数学活动经验。
这节课基本完成了教学目标,我感觉比较好的地方:让学生经历探索的过程,发现问题——找出规律——举例验证——归纳结论。虽然学生要真正理解老师所做的概括还需要大量的体验,但我相信他们经历多次这样的尝试过程,一定能逐步理解并掌握探索的基本步骤。
这节课感觉存在不足:
1、学生初次用自己的语言描述乘法结合律比较困难。
2、在介绍结合律时,应及时引导学生发现“括号的位置不同”。
3、括号的位置不同说明什么?”这里引导不到位。
《乘法结合律》教学反思 篇14在加法运算律教学时,学生对这块知识不感兴趣,有部分学生学习过此类知识,认为自己已经学习过了,掌握了,可是作业做下来并不理想。如让学生根据算式判断用的是什么运算律,部分学生判断还不准确,只知道有些题目怎么做并不知道为什么是这样做?于是我把两课时的教学改成了三课时,重新梳理知识。
在学习乘法运算律时,我让学生自己先说说你认为乘法会有什么样的运算律?不管是已经学习过的还是其他学生(有加法运算律的基础)都能说出乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)。看学生得意的表情,我问了一句:“那你知道为什么是a×b=b×a和(a×b)×c=a×(b×c)吗?”学生一个个的说理由,生1:“因为交换两个乘数的位置,它们的积不变。”生2:“因为只是交换了两个乘数的位置,这两个乘数并没有发生改变,所以积不变。”再喊了几名学生理由都是差不多的,这时班上陈某某发言了,他说:“我把a看成1,b看成0,那么1乘0得0,交换位置后0乘1还是得0,所以a×b=b×a。”没想到他的发言竟然引起了全班的哄堂大笑,他不好意思的坐下去了。可是我却做了一个和大家不一样的举动,我大声的说了一句:“非常好!”其他学生有点闹不明白了,一个个看着我……“他用举例的的方法证明了这个运算律是对的。其实在我们的数学学习过程中,经常在一系列的题目中发现一些对这类题目的规律,我们就可以总结归纳,有些总结出来的对所有的此类的题目都适用,有些对一些题目适用。以后在我们的数学学习中要学会观察,找到规律,总结方法。陈某某虽然没有总结规律,可是他用举例的方法从另一个方面来证明也是很了不起的。”我的一番话说的他很不好意思,可能我的话有很多学生都听不懂,但我就是想以此例告诉学生不仅要“知其然”而且要“知其所以然”。有一名学生根据前面学习加法时遇到的用加法交换律检验,想到了用以前学习乘法计算时的验算,交换乘数的位置再算一遍后得到的积是一样的来证明规律的存在。
课本中让学生在解决具体的情境中数学问题,引出一组算式,让学生初步理解两个乘数交换位置,积不变,再让学生通过举例,经历分析、综合、抽象的过程,得出乘法交换律,并用字母表示。乘法结合律的编排和加法结合律的相似,引导学生经过小组讨论发现规律。如果此课是在我以前教学,可能就如教材安排的学生经历这一系列的探索,发现规律,然后让学生通过试一试巩固规律,特别是让学生用自己喜欢的方式去表达规律时,学生可能想到很多不一样的自己喜欢的方式,可是在这边的'教学一点点都没有实现,因为大部分学生已经知道了用a和b的形式来表示。可是我在教学加法运算律时,按照我预设的上课,活动没有开展起来,课后我反思,是我没有考虑学生的实际情况,这边的学生在课前有多种途径去在上课之前接受知识,不管是主动还是被动,大部分学生都已经被灌输了a×b=b×a等等之类的知识。学生在上课时就认为自己已经懂了,不用听了;而在以前的学校,学生没有这么多途径,对于他们来说书上的知识就时新知识,他们知识的获得除了课前自己预习外,更多是在课堂上去探索,所以他们课堂上注意力集中,对规律的探索有更多的兴趣,更能经历知识的形成和发展的过程。
在上课时因为学生的特殊情况,在总结出规律后,针对学生的掌握情况,我没有出现试一试,而是直接出现两道题目让学生去进行比赛,(15×17×2和17×(15×2))让学生观察后任选一题进行,看看谁做的快?大部分学生选了第2题,有个别学生选第一题但也用了运算律简便计算。比赛完毕,我让学生汇报,问为什么你会选第一题,体会到把15和2相乘的优越性。



